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Abstract. Single-layer, continuous-time cellular neural/nonlinear networks (CNN) are consid-
ered with linear templates. The networks are programmed by the template-parameters. A

fundamental question in template training or adaptation is the gradient computation or
approximation of the error as a function of the template parameters. Exact equations are
developed for computing the gradients. These equations are similar to the CNN network equa-

tions, i.e. they have the same neighborhood and connectivity as the original CNN network. It
is shown that a CNN network, with a modified output function, can compute the gradients.
Thus, fast on-line gradient computation is possible via the CNN Universal Machine, which
allows on-line adaptation and training. The method for computing the gradient on-chip is

investigated and demonstrated.
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1. Introduction

The design and training of neural networks are important and challenging subjects of

neurocomputing sciences. Since the introduction of cellular neural networks [1], the

design and learning of cellular neural networks (CNN) have also been major topics

of research. A summary of template design methods can be found in [2] (see [3, 4] as

well). Template design is most developed for (i) feed-forward, (ii) uncoupled and (iii)

coupled, binary input and binary output templates. The study of CNN template

training (i.e. CNN learning) has also been an important topic ever since the first

CNN conference CNNA’90 [7]. A comprehensive summary of the early period of

design and learning can be found in [8, 9].

Template training was always based on basically the same mean square error con-

cept. However, various kinds of minimization methods were used for optimization of

the error function over the parameter space. These optimization methods are the gra-

dient methods [10]; the evolutionary methods (see [11, 12]) and the statistical optimi-

zation methods [13].

This work focuses on gradient optimization methods and on-chip CNN learning.

This means that the gradients are to be computed via CNN hardware. In [14]
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the methods used for computing or estimating gradients of neural networks are sum-

marized (for example, backpropagation-through-time and truncation). In general, it

can be stated that using exact gradients allows a wider range of templates to be

trained, but places high demand on computational resources as well [10]. On the

other hand, some simple templates may be trained by using only estimated gradients.

Our experiments have also shown that the so-called propagation templates usually

cannot be trained by truncated gradients. Consequently, our goal is to compute com-

plete, precise gradients.

In the case of pure feed-forward networks gradient computation can be solved

with back-propagation, which has been known from general neural network theory

for a long time. For recurrent networks recurrent back-propagation was introduced,

which applies to CNN as well. A general approach is network reciprocity ([16–18]),

which automates the diagrammatic derivation of the reciprocal network, computing

the gradients of the original network for arbitrary network structures.

In [15] a unified approach was presented for computating precise gradients of multi-

layer continuous-time CNNs (CT-CNN).

The main drawback of computing complete gradients is the huge demand on

resources, which makes this method intractable for practical problems. The main

contribution of our work is to give a solution for the computation of complete gra-

dients, which can be used for practical applications. The idea introduced here is to

show that the reciprocal networks of a CNN are also recurrent finite neighborhood

networks with the same neighborhood and order as the original network, and hence

they can be computed with the CNN hardware itself. This fact resembles the recipro-

cal network approach (see [16–18]), however, we use algebraic derivation (chain rule

expansion). By our approach the high demand on computational resources is fulfil-

led by a fast hardware solution.

The significance of this possibility is underlined by the fact that in an analogic

CNN computer, the CNN Universal Machine (see [19, 20]) stored program can be

defined to calculate the gradients via the same hardware. Once we are able to calcu-

late the gradients various architectural possibilities for adaptation and plasticity are

available (see [27–29]) to use this information.

2. CNN Model

Our paper deals with the continuous-time cellular neural network model with linear

templates defined as follows:

dxi;jðtÞ

dt
¼ �xi;jðtÞ þ

X
k;l2Sði;jÞ

Aðk� i; j� lÞyk;lðtÞþ

þ
X

k;l2Sði;jÞ

Bðk� i; j� l Þui;jðtÞ þ z

yi;jðtÞ ¼ fðxi;jðtÞÞ ð1Þ
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where xi;j is the state, ui;j is the input and yi;j is the output of the neuron at position

(i; j), A is the feedback and B is the feed-forward template, z is the bias and f

is the output function. Srði; jÞ is the sphere of influence of (i; j). Sði; jÞ ¼ fðk; lÞ :

maxðjk� ij; j j� lj4 rgÞ. The first equation is called network equation, and the sec-

ond output equation. The described CT-CNN is commonly used for image proces-

sing tasks, where the input image is loaded to the input U ¼ ½ui;j� and/or to the initial

state X0 ¼ ½xi;jð0Þ�, and the output image is taken at a certain time T from the output

of the network Y ¼ ½ yi;jðTÞ�.

Various image-processing tasks may be solved by choosing appropriate feedback

(A), feed-forward (B) templates and bias (z). The program of the CT-CNN is actu-

ally this set of parameters P ¼ A [ B [ z. One particular parameter will be denoted

by p 2 P.

For an arbitrary parameter-set P an error function may be defined by considering

the specific image-processing task. For example, the average mean-square error for a

predefined image is as follows:

EðPÞ ¼
1

2a

X
i;j

ðyi;jðTÞ � di;jÞ
2

ð2Þ

where a is the area of the picture, yi;jðTÞ is the computed output, using the parameter

P, and di;j is the value of the desired output at the position (i; j).

For training or other purposes the partial derivatives of the error related to the

parameters are fundamental:

dEðPÞ

dp
¼
1

a

X
i;j

ðyi;jðTÞ � di;jÞ
dyi;jðTÞ

dp
ð3Þ

3. Computation of the Gradients

First some notations are introduced for the partial derivatives:

dpyi;jðtÞ ¼
dyi;jðtÞ

dp
; dpxi;jðtÞ ¼

dxi;jðtÞ

dp
;

where p shall be replaced by a specific parameter. These two variables are the output

and state of the reciprocal network. It is obvious that the following equation holds

every time, due to the output equation of (1):

dypi;jðtÞ ¼
@f

@x
ðxi;jðtÞÞdxpi;jðtÞ ð4Þ

In order to compute the gradients the network equation of (1) has to be consid-

ered. First, the derivative of the network equation has to be taken with respect to

the variable p. Second the resulting equation has to be solved in an initial-state pro-

blem by integration up to the time T. The form of the resulting equation, which has

to be integrated depends on the kind of parameter p.
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If p ¼ Aðm; nÞ then the derivative of the network equation has the form of:

d2xi;jðtÞ

dtdp
¼ �

dxi;jðtÞ

dp
þ

X
ðk;lÞ2Sði;jÞ

dAðk� i; j� lÞ

dp
yk;lðtÞþ

þ
X

ðk;lÞ2Sði;jÞ

Aðk� i; j� lÞ
yk;lðtÞ

dp
þ

þ
d

dp

 X
ðk;lÞ2Sði;jÞ

Bðk� i; j� lÞuk;lðtÞ þ z

!
ð5Þ

where the first sum reduces to one term, and the last term is 0. With the appropriate

substitutions the equation reduces to the form of:

d

dt
dpxi;jðtÞ ¼ �dpxi;jðtÞ þ

X
k;l2Sði;jÞ

Aðk� i; j� lÞdpyk;lðtÞ þ yiþm;jþnðtÞ ð6Þ

This means that the templates of the reciprocal CNN are A0 ¼ A, B0 ¼ 1, z0 ¼ 0 and

the input is the original output. If p ¼ Bðm; nÞ the first sum in equation (5) is 0, and

the last sum is uiþm;jþnðtÞ, thus the equation becomes of the following form:

d

dt
dpxi;jðtÞ ¼ �dpxi;jðtÞ þ

X
k;l2Sði;jÞ

Aðk� i; j� lÞdpyk;lðtÞ þ uiþm;jþnðtÞ ð7Þ

This means that the templates of the reciprocal CNN are A0 ¼ A, B0 ¼ 1, z0 ¼ 0 and

the input of this network is the same as the input of the original network. Finally if

p ¼ z then in equation (5) the first sum is 0, and the last sum is equal to 1, thus the

equation reduces to the following form:

d

dt
dpxi;jðtÞ ¼ �dpxi;jðtÞ þ

X
k;l2Sði;jÞ

Aðk� i; j� lÞdpyk;lðtÞ þ 1 ð8Þ

This means that the templates of the reciprocal CNN are A0 ¼ A, B0 ¼ 0, z0 ¼ 1 and

there is no input. The gradients have to be computed by integrating these equations

using zero initial state dpxi;jð0Þ ¼ 0. Finally dpyi;jðTÞ has to be taken and substituted

into (3).

4. Hardware Solution

Equations (6), (7) or (8) can be considered as special CNN equations if dpx is the

state and dpy is the output of the cell and y (the output of the original network) is

the input.

The only problem is the special output function in (4). If this output function can

be realized in the hardware, gradient computation can be carried out with the CNN

itself (see Figure 1).

If separate CNN chips are available for all the partial derivatives which have to

be computed, then the gradient computation can be solved by using the reciprocal

templates and by connecting the chips. The output and state of the original CNN
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shall be fed into the reverse networks, which compute the partial derivatives. The

time demand of gradient computation is the same for one template parameter as

for the computation of the original CNN.

If only one CNN chip is available, the gradient can be approximated by using the

CNN Universal Machine. The state and the output of the original CNN shall be

sampled and stored appropriately for approximating the state and the output as a

function in time.

In both cases on-line and fast gradient computation is possible, which is important

for training or adaptation purposes.

In both cases the computation of the gradient of one parameter consumes exactly

the same time, as the computation of the original template. This is TtCNN where T is

involved as a free parameter in the description of the algorithm, i.e. dependent on

task to be trained, and tCNN is a physical parameter of the chip. This value vas

for example 250 ns for the ‘Seville’-chip [30].

5. Tests and Results

Since only one chip was available, therefore the second possibility was tested on chip.

The following diffusion template was used:

A ¼

0:1 1 0:1
0:1 0 0:1
0:1 0:1 0:1

B ¼

0 0 0
0 1 0
0 0 0

z ¼ 0

The center element of the template A was modified to p ¼ a00 ¼ �0:1. The gradient

for this parameter was the question of the experiment. The advantage of using diffu-

sion is that there is no saturation, and all cells are in the linear domain. Therefore

Figure 1. Flowchart of on-line gradient computation via CNN and the reverse CNNs. The reverse CNNs

computing the gradients related to the different types of template parameters are denoted as CNNA,

CNNB, CNNz respectively.
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the term df=dxijðxijÞ ¼ 1, and thus in equation (4) df=dxijðxijðtÞÞ dxpijðtÞ ¼ dxpijðtÞ,
which is fðdxpijðtÞÞ assuming no saturation. In this case the gradient computation

can be established on the current architecture. To avoid saturation the values can

be scaled down if needed.

The transient of T ¼ 1tCNN was sampled in 10 discrete time steps. This gives an

approximation of the changing output, and this was used as the input of the reverse

CNN computing the gradient. This means that yðtÞ was approximated with the series

yð0Þ; yð0:1Þ; . . . ; yð0:9Þ. The gradient was computed by simulation and on chip as

well, with the same method presented above. The result is compared in Figure 2.

Figure 2. a) Result of the modified template, b) desired result with the desired template, c) result of com-

putation on-chip, d) result of the approximation of the gradient on chip. The pictures show the matrix

½ðyðTÞij � dijÞdyij � ðTÞ=dpij�ij. Both gradients are sufficient and comparable. Regrettably there are also

fault on the result with chip. The overall contrast is larger on-chip, which can be tuned, if it is important.

The gray blur on the right bottom of the black triangle in picture c is however presumably a failure of the

used chip. The colors code values with a linear function on the ranges [�1,1]![white,black].
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We cannot determine the real gradient, since the close formula of the integral of

equation (6) is not known. Therefore we assume that the simulation approximates

a good gradient and we compare the chip-result to this value. The computed gradient

0.013 is appropriate, since the center element should be increased to achieve the

desired template. As it can be seen on the image, the computation on-chip is not per-

fect, but the result is suitable.

6. Discussion

In the following, we review how our results fit into a broader area of research. There

are various methods of optimization that are used in CNN template training (see, for

example [11, 13]). Evolutionary and statistical methods are robust but they are slow

since they require a large number of epochs to explore the solution space to find

good directions. Moreover, these methods – although work for a wide range of tem-

plates – require external (i.e. off-CNN) mechanisms typically implemented in soft-

ware. Therefore, fast and on-line learning is difficult.

Gradient methods were used in [8–15] for example, but there were some difficul-

ties. One problem was that by using the standard output function, the error function

is non-continuous, and therefore the continuation method had to be introduced in

[23]. The work in [14], summarizes gradient computing methods for a network simi-

lar to CNN namely, for the Simultaneous Recurrent Network (SRN). In this work

the finite neighborhood case is also discussed, thus this network becomes very similar

to a DT-CNN.

The computation of gradients for neural networks is a fundamental topic of

research. There exists an approach [16–18] for automatic generation of the so-called

reciprocal network for arbitrary (i.e. also recurrent) network structures, which

computes the gradients of the original network. This approach can be used for

CNNs as well.

The method of computing gradients for a CT-CNN network can be established

with the help of using the above mentioned reciprocal network approach, or speci-

fically by the simple, iterative use of the chain rule.

The results presented in this paper can be related to other research on this topic.

More specifically, we discuss our contribution in relation to three papers.

The first one is the paper of R. Tetzlaff and D. Wolf [15] which introduces a

learning algorithm for the dynamics of CNN with nonlinear templates. It is shown

that the gradients for multilayer CT-CNNs can in general, be given with a coupled

system of differential equations. In our paper, we extend this result by rigorously

deriving exact analytical formulae for the gradients for single-layer CNNs with lin-

ear templates and by showing that these gradients can be computed with the CNN

itself (i.e., no external mechanism is required for learning). Besides it is necessary

to use the continuation method for CNN’s with piecewise linear output function.

Furthermore, we explicitly address image-processing tasks related to propagating

templates.
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The second paper is the work of P. Xiaozhong and Paul J. Werbos [14], which

basically describes the basics of gradient optimization based training methods of

the Simultaneous Recurrent Networks (SRN). The paper describes backpropaga-

tion-through-time (BTT) training and gradient computation for SRN’s among oth-

ers. The case of local neighborhood connectivity is also discussed. A SRN with local

neighborhood is very similar to a DT-CNN, although the SRN is more complex

since it consists of so called composite cells. Our work applies gradient-based train-

ing to CNNs and the method of gradient computation is detailed.

The third paper is the work of T. Yang and L. O. Chua [22], which recognizes the

possibility of realizing gradient computation for BTT with CNN. However their

work is related to the training of SRN’s, we address the training of the CNN itself.

7. Conclusion

It has been proven that the reciprocal networks of a CNN are recurrent networks

with the same connectivity-structure and neighborhood as the original network.

Consequently, the computation of gradients, which consumes a prohibitively large

amount of resources, can be carried out basically with the same network structure.

Thus gradient learning or gradient based parameter adjustment can be done quick

and on-line. The time demand of gradient computation with such hardware would

be the same for one template parameter as the time demand of the computation

of the original CNN itself. This way CNN may become a compact, flexible device

without the need of an external device for parameter optimization.

The results are valid for single-layer CNNs with linear templates. However, they

can be similarly extended for multilayer CNNs and for nonlinear templates as well.

This is a subject of research in the future.

Our experience has also shown that if gradient optimization is used for template

training in practice, developing an intelligent and robust gradient algorithm is essen-

tial. The development could be based on the methods mentioned in our work.
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